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Abstract. We have measured, using the TOSCA spectrometer at ISIS, the inelastic incoherent neutron
scattering spectrum of liquid and solid para-hydrogen along the T = 19.3 K isotherm. From the high-energy
region of the spectrum, where the Impulse Approximation for the Centre of Mass motion applies, we have
been able to extract the mean translational kinetic energy, which, as expected, turns out rather different
from the classical value and density dependent. We find that the density behaviours in the liquid and the
solid phase are slightly different. This confirms a similar feature already observed in liquid and solid helium
at T = 6.1 K [M. Celli, M. Zoppi, J. Mayers, Phys. Rev. B 58, 242 (1998)]. The spectra from the solid
phase have been also analysed in the low-energy region and allowed us to derive the Debye-Waller factor of
solid para-hydrogen as a function of density. The comparison with the available experimental data in the
literature is rather good and confirms the excellent performances of TOSCA in the spectroscopic analysis
of the condensed phases of para-hydrogen.

PACS. 61.12.Ex Neutron scattering techniques (including small-angle scattering) – 64.70.Dv Solid-liquid
transitions – 67.90.+z Other topics in quantum fluids and solids; liquid and solid helium

1 Introduction

The dynamics of simple systems can be directly accessed
by means of Inelastic Neutron Scattering (INS) [1]. The
double differential cross section for INS is given by [2]:

d2σ

dΩdω
=
k1

k0

1
2π~

∑
i,j

bibj

∫ +∞

−∞
dt exp(−iωt)

× 〈exp [−ik ·Ri(0)] exp [ik ·Rj(t)]〉 , (1)

where: dΩ is the collection solid angle, k0 and k1 are the
incident and scattered neutron wavevectors, bi is the scat-
tering length of the ith nucleus, ~k = ~k0−~k1 is the mo-
mentum transfer, and ~ω = E0−E1 is the energy transfer.
The sum over i and j extends over the nuclei contained
in the scattering volume and the angular brackets mean
(quantum) thermodynamic average over the sample.

The time dependent pair correlation function
Fi,j(k, t), defined as:

Fi,j(k, t) = 〈exp [−ik ·Ri(0)] exp [ik ·Rj(t)]〉 , (2)

contains all the relevant dynamic information. This rep-
resents the joint probability that the particle j can be
found in the position Rj , at time t, given that the parti-
cle i, which can be the same or a different one, is found
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at t = 0 in the position Ri. Thus, Fi,j(k, t) contains all
the dynamic information relative to the average motion
of a single particle with respect to its initial position (self
term) or the relative motion of a particle with respect to
another one (distinct term). The system dynamics is de-
termined by its Hamiltonian operator, which includes all
the interactions among the particles of the sample.

INS experiments are usually carried out in different
regions of momentum, ~k, and energy transfer, ~ω, de-
pending on the particular neutron spectrometer. It is
well known that, by changing the (k, ω) range, differ-
ent dynamic regimes are sampled. In the low-k region
(0 < k < 5−10 Å

−1
) the collective properties of a molec-

ular sample are probed. In this region, the dynamics is
mainly determined by the inter-molecular correlations.
The intermediate-k region (5−10 Å

−1
< k < 20−30 Å−1)

is related to the intra-molecular interactions. Here, the
molecular structure and internal force-constants mainly
determine the molecular dynamics, which, in turn, be-
comes almost independent of the motion of the neigh-
bouring molecules. As the momentum transfer further
increases (in practice when k > 30 Å

−1
) we enter the

so-called Impulse Approximation (IA) regime where the
scattering function becomes insensitive to the atomic in-
teractions and depends only on the initial conditions of
the system. In the validity range of the IA regime, the
scattering function reduces to a recoil peak whose shape
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is only determined by the momentum distribution of the
target atoms [3].

For classical systems, the momentum distribution of
the molecular translational motion is determined by the
Maxwell-Boltzmann velocity distribution. This is a three-
dimensional Gaussian function whose width is related to
the average translational kinetic energy which, in turn, is
given by the temperature according to the usual relation:
〈Ek〉 = 3

2kBT . As quantum effects become relevant, both
the shape and the width of the momentum distribution
can change and values for the kinetic energy different from
the classical limit can be observed. These effects usually
appear at low temperature, as in the case of quantum liq-
uids, but can also manifest at relatively high temperature,
as in the case of solids with a high Debye temperature. At
any rate, any deviation from the classical behaviour of the
momentum distribution is a clear signature of the emer-
gence of quantum effects.

Deep inelastic neutron scattering, also known as Neu-
tron Compton Scattering (NCS) [4], is an experimental
technique that makes use of the epithermal neutrons, pro-
duced by a Spallation Neutron Source, to probe materials
in a regime of very high momentum and energy transfer,
i.e. within the limits of applicability of the IA. By means
of NCS one can access direct information on the momen-
tum distribution of atomic particles at the microscopic
level. In particular, this technique has been used, in the
recent years, to measure the behaviour of the mean kinetic
energy in low temperature normal liquid and solid 4He as
a function of the thermodynamic state [5–12].

The density and temperature behaviours of mean ki-
netic energy in a quantum system are still matter of re-
search. For the temperature dependence, at constant den-
sity, data are usually well represented both by an Einstein
oscillator and an effective Debye model [6]. These two
models merge into the classical behaviour at sufficiently
high temperature. For the density dependence, it has been
suggested that the changes in mean kinetic energy are pro-
duced by variations in the excluded volume [7,8,11]. As
the volume available to an atomic particle becomes smaller
and smaller, then, because of the Heisenberg’s uncertainty
principle, the variance of the single particle momentum
increases and so does its mean kinetic energy. This sim-
plified representation of reality has the advantage of being
intuitive and qualitatively correct.

The first experimental determinations [13] of the mean
kinetic energy of liquid and solid hydrogen were rather
uncertain (∼10%). Following determinations, in the solid
phase [14], were more accurate (4–11%), and a linear fit
in 1/n, where n is the number density, was suggested. The
same experimental data were also compared with the Path
Integral Monte Carlo (PIMC) simulation results [15] and a
rough density dependence with n2 was suggested, mostly
based on the simulation results. This functional form had
the advantage of being simple but no theoretical expla-
nation was developed at the time, and it was somehow
justified by the relatively small density interval where the
density analysis was carried out.

In recent NCS experiments [8,11], the kinetic energy of
liquid and solid helium has been measured at low temper-
ature along a supercritical isotherm. In this way, a large
density interval could be explored, between 6 nm−3 and
the freezing point (35 nm−3), and the density behaviour
over a much larger range of the fluid phase could be ob-
tained. This was fitted by a power-law function:

〈Ek〉 =
3
2
kBT +AnP , (3)

where P = 2.46. No theoretical explanation exists for this
functional form, which should be only considered as a use-
ful parametric representation. The NCS experiment was
also extended to the solid phase. However, it turned out
that the extrapolation to the solid phase, of the same func-
tional form determined in the liquid, produced a different
density behaviour than that actually measured (see Fig. 2
of Ref. [11]). This fact is in contrast with the hypothesis
of a simple excluded volume effect to explain the density
evolution of the kinetic energy and suggests that a more
detailed structural information may have some role. On
the other hand, it should be pointed out that other au-
thors found different results and draw dissimilar conclu-
sions [9,12].

In order to shed some light on this interesting aspect of
the problem, we thought that more experimental results
would be necessary. An obvious extension could have been
to run an independent experiment on the same system,
namely helium, but along a different isotherm. However,
we thought that more convincing results could be obtained
by changing the nature of the quantum system. Molecu-
lar hydrogen, therefore, was the obvious choice. In fact,
even though the freezing temperature of liquid hydrogen
is rather large, compared to helium, its molecular mass is
smaller and therefore the hydrogen quantum features are
rather large and comparable with those of normal helium.

Measuring the mean kinetic energy of molecular hydro-
gen by using the same neutron instrument that was used
for the helium experiment, namely the electron volt spec-
trometer eVS, does not allow the required precision [16].
In fact, the range of momentum transfer that is tested
on eVS is so large (>30 Å

−1
) that one measures di-

rectly the kinetic energy of the protons in the hydrogen
molecule [17]. As the rotational and vibrational compo-
nents of the molecular energy add to the translational
component of the molecular kinetic energy, such a mea-
surement would have been intrinsically less precise than it
was needed. In practice, the experimental problem reduces
to the fact that we want to have a momentum transfer high
enough that the IA can be applied for the centre-of-mass
(CoM) motion of the molecule. On the other hand, the
energy-momentum transfer should be small enough that
the molecular character of hydrogen is not disrupted by
the experiment (the intra-molecular final state must still
be a bound state of the molecule). Therefore eVS had to
be excluded.

We have recently shown that an instrument satisfying
the above requirements exists. The TOSCA spectrome-
ter, recently built at ISIS [18], has the necessary char-
acteristics. Using this instrument we have shown that the
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translational kinetic energy of the CoM of molecular para-
hydrogen can be measured [19] with a precision that sen-
sibly improves the previous determinations [13,14,20].

In this paper we report the results of an experiment,
carried out on liquid and solid para-hydrogen, aiming to
the measurement of the translational mean kinetic energy
of the molecular centre-of-mass as a function of density.
The experiment has been carried out on the isotherm at
T = (19.3± 0.1) K. In Section 2 we will describe the de-
tails of the experiment. Section 3 is devoted to the analysis
of the experimental data and the derivation of the mean
kinetic energy values. In Section 4 we discuss further re-
sults obtained from the experiment, and the conclusions
are drawn in Section 5.

2 Experiment details

The measurement was carried out at six thermodynamic
points (see Tab. 1). The first three points refer to the liq-
uid, while the three high-density points refer to the solid
phase. Of the latter, the one at low density is presumably
in the fcc lattice phase while the two at the highest den-
sities should be hcp [21]. However, both the existence of a
high temperature fcc phase in para-hydrogen, and the lo-
cation of its boundary line, are still controversial [22,23].
At any rate, we believe that this interesting problem has
almost no impact on the present study, devoted to single
particle properties, since the first three shells of nearest
neighbours are identical for the two cases [24].

After performing the background measurements of the
empty cryostat, we cooled the scattering cell at the de-
sired temperature (T = 19.3 K) and we measured its
time-of-flight (TOF) spectrum. Then, hydrogen was al-
lowed to condense in the scattering cell. This was made
of SS-316 steel and consisted of an array of 5 tubes (O.D.
3.2 mm, I.D. 1.6 mm), 64.0 mm high and 5.5 mm apart
to one another, so as to minimise the multiple scattering
contributions. At the bottom of the scattering container,
out of the neutron beam, we had inserted some powder
of paramagnetic catalyst made of Cr2O3 and γ-Al2O3 in
order to accelerate the transition rate from ortho- to para-
hydrogen.

The pressure of the gas handling system was set to
p = 191.2 bar, a pressure just below the freezing point at
this temperature. The relative concentration of the two
species was monitored looking at the scattering spectrum.
In particular, we could observe the progressive disappear-
ance of the J = 1 → J ′ = 1 transition, that is weighted
by the incoherent cross section of the proton, from the
quasi-elastic portion of the spectrum. When this spectral
component was below the limit of detectability (in prac-
tice, masked by the J = 0 → J ′ = 0 transition, that
is weighted by the coherent cross section of the proton)
we assumed that the equilibrium was reached. The equi-
libration process took, in this case, about 24 hours. The
estimated concentration of para-hydrogen, based on the
theoretical analysis, is assumed to be 99.82%. Then, we
started recording the scattering spectrum up to an inte-

Table 1. Thermodynamic data and experimental measure-
ment time (I.C. = integrated proton current). The numbers in
brackets are standard deviations and affect the last significant
digit.

T (K) p (bar) n (nm−3) Phase I.C. (µAh)

19.33(1) 17.4(5) 22.04(1) Liq. 664.3

19.36(2) 90.9(5) 23.83(1) Liq. 3566.6

19.34(2) 191(2) 25.43(3) Liq. 3065.8

19.34(2) 395(2) 29.56(1) Sol. 2952.9

19.37(7) 543(2) 30.60(1) Sol. 3368.3

19.40(1) 636(1) 31.29(1) Sol. 3791.0

34.99(5) 0.0 empty - 982.2

grated proton current of 3065.8 µAh (about 18 hours of
measurement).

The spectra in the solid phase were taken in a simi-
lar way. The set-point temperature of the scattering cell
was kept constant and we modified only the pressure. Af-
ter changing the hydrogen pressure in the gas line, we
took care of heating the inlet of the sample cell to make
sure that the sample pressure was in equilibrium with the
reading of the pressure gauge. The input tube of the scat-
tering cell was then allowed to cool down slowly to the
same temperature of the cell body so as to make sure that
the inlet hole was the last part where the sample solid-
ified. This procedure implies some transfer from the gas
line into the scattering cell. However, this amount of gas
is extremely small and is located in the highest part of the
scattering cell, which however was kept out of the neutron
beam. The absence of the spectral line corresponding to
the J = 1 → J ′ = 1 transition was checked every run to
exclude any unwanted sample contamination from ortho-
hydrogen. The three solid phase runs were carried out for
comparable amounts of time (see Tab. 1). Each change of
pressure was performed as described above.

After completing the solid-state runs, the system was
then brought back to the liquid phase. To this aim,
after warming the cell inlet, the pressure was gently
released, allowing the sample to slowly decrease its den-
sity and eventually to melt. The precise melting transi-
tion could be observed in the neutron scattering spectrum
looking at the disappearance of the sharp rotational line
at ~ω = 14.2 meV [25]. The system was then brought
to the desired pressure in the liquid phase and two more
points were measured.

The stability of the thermodynamic conditions during
the experiment was very good. The temperature fluctua-
tions never exceeded 0.2 K and the pressure stability was
strictly related to this value, thanks to the very good re-
alisation of the gas handling system. The densities of our
samples were derived according to reference [21]. The full
set of parameters characterising the present experiment is
reported in Table 1.
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Fig. 1. Inelastic neutron spectra of liquid (open circles: n =
22.04 nm−3) and solid (full triangles: n = 31.29 nm−3) para-
hydrogen from TOSCA. Raw data are shown in the energy
range used for the mean kinetic energy fitting procedure (see
Sect. 3). The insert shows a typical spectrum of solid para-
hydrogen (n = 31.29 nm−3) in the low-energy region. The
sharp line observed at ~ω = 14.2 meV corresponds to the (J =
0→ J ′ = 1) rotational transition.

3 Experimental results for the mean kinetic
energy

As it was explained in the report of our previous test ex-
periment on TOSCA [19] not all the spectral information
can be used to extract the translational kinetic energy. In
fact, in the low energy portion of the spectrum (in essence,
that extending from ~ω = 0 to beyond the first peak of
the spectrum) the momentum transfer is not large enough
that the IA can be applied to the translational motion
and the inter-particle interactions still affect this spectral
region [26]. However, starting from just before the first
minimum (~ω ∼= 100 meV) the value of the momentum
transfer becomes large enough (k > 8 Å

−1
) that the IA

can be applied to the CoM motion.
In Figure 1, we report two typical raw data spectra

of liquid and solid para-hydrogen on TOSCA in the spec-
tral range used to extract the mean kinetic energy. Since
the sample is at low temperature, and at a relatively low
density, only the J = 0 rotational state is populated (at
least up to a density of 32 nm−3, see Ref. [27]) and the
various broad peaks observed in the figure correspond to
the rotational transitions from J = 0 to the odd rotational
numbers (J ′ = 3, 5, 7). The transitions to the even rota-
tional numbers are also present. However, being weighted
by the much smaller coherent cross section of hydrogen,
they cannot be seen in the figure. The various peaks are
broadened and shifted by the recoil of the CoM and their
width contains the requested information on the transla-
tional kinetic energy.

If we focus our attention on the rotational transition
(J = 0 → J ′ = n), where n is an odd integer, the double

differential cross section is given by [2,19]:

d2σ

dΩdω
=
k1

k0

σi
4π

∑
(k, ω) =

k1

k0

σi
4π
|f(k)|20→n

× Sself(k, ω)⊗ δ(ω − ω0→n) (4)

where σi is the hydrogen incoherent cross section,
|f(k)|20→n is the intra-molecular form factor of this transi-
tion and Sself(k, ω) is the self, molecular (CoM), dynamic
structure factor [2]. The symbol ⊗ represents a convolu-
tion and δ is the Dirac delta-function. The cross section
can be evaluated along the kinematic path of TOSCA [18]
to derive a theoretical double differential cross section,
provided a suitable model is given for Sself(k, ω).

In the applicability limit of the IA, the intermediate
scattering function, Fself(k, t), i.e. the time-Fourier trans-
form of Sself(k, ω) [2], reduces to:

Fself(k, t)→ FIA(k, t) = exp
{

i
Er
~
t

}
〈exp{ik · vt}〉 (5)

where Er = ~2k2/2M is the recoil energy, M is the molec-
ular mass, and v ≡ v(0) is the velocity of the target
particle at time t = 0. Within the IA, the dynamics
of the molecular CoM is approximated by the ideal-gas
model and therefore the dynamic structure factor simply
becomes:

Sself(k, ω) = ~
∫

dpn(p) δ(~ω −Er − ~k · p/M), (6)

where p = Mv is the momentum of the target particle
and n(p) is its momentum distribution [2,28].

By assuming a known shape for the momentum dis-
tribution, namely a Gaussian distribution whose width is
determined by the average translational kinetic energy of
the molecular CoM, a theoretical cross section can be de-
rived where the only free parameter is the width of the
momentum distribution. This allows us to derive a theo-
retical expression for the measured neutron cross-section
using two fitting parameters, namely the translational ki-
netic energy of the molecular CoM, and an overall nor-
malisation constant.

The six spectra, taken at the various thermodynamic
conditions listed in Table 1, have been fitted using equa-
tion (4) and their respective translational kinetic energy
values have been obtained. These are listed in Table 2 (3rd
column). In the first row of Table 2 we have also reported
the value of the mean kinetic energy, at the same temper-
ature of the present determination, obtained in our previ-
ous experiment [19]. For the details of the data analysis
we address the reader to our previous work on low-density
liquid para-hydrogen [19]. The kinetic energy data of para-
hydrogen, at constant temperature T = 19.3 K, are plot-
ted in Figure 2 as a function of density (open circles with
error bars). The two vertical (dashed) lines represent the
boundaries for the liquid and the solid phase at the same
temperature [21]. The lowest density point reported in the
figure is relative to our previous experiment [19]. We notice
that the statistical accuracy of the present experimental
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Table 2. Mean kinetic energy data (experiment and PIMC simulations) and experimental molecular mean square displacements
(solid phase only, see text). The numbers in brackets are standard deviations and affect the last significant digit. In the first
line, we have included the results of a previous experiment [19].

T (K) n (nm−3) 〈Ek〉exp (K) 〈Ek〉PIMC (K) 〈u2〉 (Å2) 〈u2〉0 (Å2)

19.2(2) 21.50(6) 62(1) 61.4(1) - -

19.33(1) 22.04(1) 63(3) 62.6(3) - -

19.36(2) 23.83(1) 68(3) 68.6(3) - -

19.34(2) 25.43(3) 74(5) 74.5(1) - -

19.34(2) 29.56(1) 89(4) 90.9(7) 0.47(2) 0.41(2)

19.37(7) 30.60(1) 97(5) 96.6(3) 0.39(2) 0.35(2)

19.40(1) 31.29(1) 102(5) 100.3(8) 0.37(2) 0.33(2)
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Fig. 2. Density behaviour of mean translational kinetic energy
in liquid and solid para-hydrogen at T = 19.3 K. Open circles
(with error bars) stand for the results derived from the present
neutron scattering spectra (cf. Tab. 2). Full dots are obtained
from PIMC quantum simulations (statistical errors are smaller
than the symbol size, full line is an eye-guide). Vertical dashed
lines mark the boundaries of the liquid and solid phases.

points is lower than the previous ones. This is related to
the smaller scattering volume of the sample, in the present
experiment, that was imposed by the use of a high pres-
sure container.

4 PIMC simulation

The computer simulations of liquid and solid para-
hydrogen were carried out using the same technique,
namely PIMC, which was employed in references [15,19],
assuming a pair-wise additive intermolecular potential.
For the solid phase, the crystal lattice was considered fcc
(n = 29.56 nm−3) and hcp (n = 30.60 and 31.29 nm−3).
Several specific pair potentials are available in the liter-
ature and some recent experimental results, using light
scattering, suggest that the Schaefer and Köhler po-
tential [29] best represents the low-density experimen-
tal results [27]. However, in this case, we preferred to
use the semi-empirical model proposed by Silvera and
Goldman [30] because it gives a better description of

the thermodynamic data of hydrogen in the condensed
phases [31].

The number of classical particles was set to N = 256
(liquid and fcc), while we have set N = 180 for the hcp
solid. Although relatively small, the size of N should be
sufficient to describe a single particle property like the
kinetic energy, which is our main concern here. The par-
ticles were assumed to obey the Boltzmann statistics. All
interactions were truncated spherically at a cut-off equal
to half the minimum edge length of the box, and potential
energies and pressures were corrected by integrating over
a uniform density beyond the cut-off. The thermodynamic
conditions were selected according to the temperature and
density of the experimental points (see Tab. 1).

In order to extrapolate the simulation results to the
limit P →∞, we have carried out several simulations by
changing the Trotter number P , i.e. the number of beads
in the ring polymer isomorphic to the quantum particle. In
particular, for each thermodynamic point, we used P = 8,
16, 32, and 64. The convergence of the results to the quan-
tum mechanical limit was analysed by fitting 〈Ek〉(P ) as
a second order polynomial in 1/P .

Each simulation was started from a perfect lattice (fcc
or hcp) and consisted of 15,000×NM passes (i.e. moves
per particle), after a 15,000×NM passes equilibration
stage. Here NM is the dilution factor; i.e. the number
of passes performed before analysing the next configura-
tion. We used NM = 5. Thus, averages were accumulated
using 15,000 configurations out of each run that, in to-
tal, was obtained accumulating N ×NM× 15,000 Monte
Carlo moves (plus equilibration). The results of our sim-
ulation are reported in the fourth column of Table 2 and
in Figure 2 (full circles). The agreement with the experi-
mental data is excellent. In addition, as there are no ex-
perimental data close to the melting line, and with the
aim of gaining a better insight of the behaviour of the
mean kinetic energy close to the phase transition, a further
thermodynamic state has been included in the simulation
plans (fcc, T = 19.34 K, n = 28.12 nm−3) giving rise to:
〈Ek〉 = 84.4(2) K. This point too is shown in Figure 2.

Thanks to the evident agreement of the simulation re-
sults with the experiment, and taking advantage of the
better statistical accuracy of PIMC data, we decided to
analyse the density behaviour of the mean kinetic energy
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using the simulation points. As a first step, we have at-
tempted to describe the density evolution using a simple
power law: 〈Ek〉 ∝ nP for the whole density range (in-
cluding both liquid and solid phases). However, this func-
tion is not able to properly fit our data. On the contrary,
individual fitting procedures, applied to liquid and solid
phases separately, yield a much better description of the
data. Needless to say, the two exponents turn out rather
different, Pliq = 1.16(2) and Psol = 1.60(2) and, in addi-
tion, these values are also different from the one previously
found for fluid helium (P = 2.46, see Sect. 1).

Of course, one would expect a change in the exponent,
even looking at the liquid data only, because of the differ-
ent interaction potential and the different quantum nature
of the two samples (hydrogen and helium). However, we
feel that this difference is rather large and we would like
to gain a deeper physical insight of the problem. To this
aim, we have attempted to subtract from the mean ki-
netic energy 〈Ek〉, the purely thermal component in order
to obtain the density behaviour of the zero-temperature
contribution, namely 〈Ek〉0 = 〈Ek〉(n, T = 0). In general,
this is rather time-consuming. For example, using PIMC
at lower temperatures would imply a substantial increase
of the Trotter number, P , with a consequent significant
expansion of the CPU time. Moreover, in order to eval-
uate the T → 0 limit of the kinetic energy, several sim-
ulations at different temperatures should be carried out.
However, there are two cases where an evaluation of the
thermal component is particularly simple. These are the
Einstein oscillator model and the Debye model. In addi-
tion, the two approximations are very different from each
other. Therefore, a comparison between the two results
may be enlightening. In both cases, we found, as expected,
that the thermal corrections were very similar and much
smaller than 〈Ek〉. Therefore, we could use either one for
our purposes. In the end, we decided to use the Debye
correction [32]:

〈Ek〉 =
9
4
kBT

(
T

ΘD

)3 ∫ ΘD/T

0

x3 coth(x/2)dx,

〈Ek〉0 =
9
16
kBΘD, (7)

where ΘD is the effective Debye temperature of the sys-
tem.

While using the Debye model for a solid-state system
is a generally accepted procedure, its extension to the liq-
uid state is not a trivial matter. However, according to the
suggestion of reference [33], such an extension seems pos-
sible and, to some extent, theoretically justified. At any
rate, since the thermal contributions are rather small, we
decided to extend the use of the Debye model also to the
liquid phase, in order to correct the mean kinetic energy
data for the effects of a temperature T 6= 0.

As a subsequent step, the data were fitted using a sim-
ple Grüneisen law: 〈Ek〉0 ∝ nγ . This gives rise to the
following results: γliq = 1.30(2) and γsol = 1.67(2). It is
worthwhile to observe that the latter value is quite similar
to γ, the isotropic mean value obtained from the phonon
dispersion curves of solid ortho-deuterium between zero

pressure and p = 275 bar at T = 5 K [34]. In fact,
using these results we find γ = 1

3 (2γT + γL) = 1.63.
On the contrary, the same quantity estimated from the
calorimetric data of solid para-hydrogen [35] in the same
density and temperature range of the present experiment
(n = 29.11−37.19 nm−3 and T = 18−20 K) gives a value
of γsol = 2.21(5). This is not surprising for a non-ideal
Debye system, since specific heat is mainly influenced by
the low-energy portion of the phonon density of states,
while 〈Ek〉0 is mostly determined by the high-energy zone.

5 More experimental results in the solid
phase

While the liquid phase spectra appear as rather smooth
structures dominated by the first rotational transitions
shifted and broadened by the CoM recoil, the solid state
spectra show some extra features which are mainly con-
centrated in the low energy region. As observed in the
insert of Figure 1, this region is dominated by an in-
tense sharp peak, centered at ~ω = 14.2 meV, super-
imposed to the broad spectral feature common to the
two phases. Then, at higher energy, we observe a peak
(~ω = 21.9 meV) which has been already interpreted [36]
as the maximum of the solid para-hydrogen density of
phonon states, shifted by the (J = 0 → J ′ = 1) rota-
tional transition energy.

The width of the sharp line is instrument resolution-
limited (the relative resolution of TOSCA is better than
2% in this spectral region) and could not be measured. We
interpret this sharp feature as the (J = 0 → J ′ = 1) ro-
tational transition for which the CoM recoil is tranferred
to the crystal lattice. In the framework of the decoupled
model sketched in equation (4), it corresponds to the elas-
tic contribution of the solid incoherent structure factor,
Sself(k, ω = 0) [2], shifted in energy by an amount fixed
by the rotational transition. Thus, we assume that the
sharp line (SL) is described by the following cross section:[

d2σ

dΩdω

]
SL

=
k1

k0

σi
4π
|f(k)|20→1

× exp
{
−2W (k)

}
δ(ω − ω0→1) (8)

where W (k) is the spherically averaged Debye-Waller fac-
tor (our sample is most likely a polycrystal) and the other
symbols have the same meaning as in equation (4).

Quantum crystals are generally considered anhar-
monic [3]. However, in solid hydrogen at various densities,
it has been experimentally proven [36,37] that it is possi-
ble to express the spherically averaged Debye-Waller fac-
tor as: W (k) = 1

3k
2〈u2〉. This implies an almost Gaussian

distribution of the molecular centre of mass around the
lattice site and that, at least for k values not larger
than 4 Å−1, the higher powers of k in W (k) can be ne-
glected. Thus, we can evaluate 〈u2〉, provided an indepen-
dent normalisation of the spectra is available. In our case,
we used the same normalisation factor that was obtained
from the mean kinetic energy fitting procedure applied to
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Fig. 3. Density evolution of the zero-temperature mean
squared displacement of solid para-hydrogen. Full squares with
error bars stand for the results derived from the present neu-
tron scattering spectra at T = 19.3 K (sharp line at ~ω =
14.2 meV, see insert in Fig. 1). Open triangles with error
bars refer to Vindryaevskii’s neutron measurements [37] at
T = 4.2 K. Open squares and circles represent values of 〈u2〉0
derived from Krause et al. [35] at T = 19.3 and T = 4.2 K, re-
spectively. Dashed lines are spline fits of the calorimetric data.

the high energy region of the spectra (see Sect. 3). This
procedure is, of course, not ideal for evaluating 〈u2〉, since
the normalization constant derived from the Young and
Koppel [38] fitting are affected by some uncertainties, of
the order of 5% (e.g. diffraction measurements would pro-
vide more accurate results, both for 〈u2〉 and n). How-
ever, this uncertainty has been correctly propagated in
the present determination of the 〈u2〉 values which are
reported in the fifth column of Table 2.

As for the mean kinetic energy, we need to subtract
the thermal contribution to compare our results with the
available data in the literature. To this aim we used a
procedure similar to that described in the previous sec-
tion and we could obtain the zero-temperature compo-
nent (density dependent) of the mean square displace-
ment, 〈u2〉0. The results are reported in the sixth column
of Table 2 and in Figure 3.

We compare, in Figure 3, the present experimental
determinations for 〈u2〉0 with the data of Vindryaevskii
et al. [37], also obtained from a neutron scattering ex-
periment, and with those derived by us using the results
from calorimetric experiments by Krause and Swenson [35]
through the Debye model [32]: 〈u2〉0 = 9

4
~2

MkBΘD
. It is

interesting to observe, that our data are in fair quanti-
tative agreement with the calorimetric determinations at
T = 19.3 K. On the other hand a similar agreement is
found between Vindryaevskii’s determinations of 〈u2〉0 at
T = 4.2 K and the Krause’s calorimetric ones at the same
temperature. This can be easily understood since specific
heat is mainly influenced by the low-energy portion of the
phonon density of states, likewise 〈u2〉0. In addition, the
evident temperature variation of 〈u2〉0 and ΘD (see for
example Refs. [34,35]) which are supposed to depend on

density only, is a clear mark of the anharmonicity of solid
para-hydrogen.

6 Conclusions

We have reported the density evolution of the transla-
tional mean kinetic energy of condensed para-hydrogen
as obtained from the inelastic incoherent neutron scatter-
ing spectra. Data have been compared with the results a
PIMC quantum mechanical simulation and an excellent
quantitative agreement has been found. The present data
reveal a slightly different density-behaviour between the
liquid and the solid phases. Even though the range of den-
sities is not extremely large, the same power law cannot
properly describe the density evolution of 〈Ek〉 in the two
phases. Instead, two different exponents are found for the
best fits of the data in liquid [Pliq = 1.16(2)] and in solid
[Psol = 1.60(2)] para-hydrogen. This feature is in qualita-
tive agreement with a similar behaviour already observed
in supercritical helium at T = 6.1 K [11]; even though
the helium exponent for the fluid phase (P = 2.46) turns
out different from the value of liquid hydrogen. This fact
raises an interesting question about a quantitative com-
parison between these two quantum systems, which should
be analysed more thoroughly. However, this is beyond the
scope of the present work and will be addressed in a future
paper [39].

A useful way to study the problem is to reduce the
measured mean kinetic energy to its pure density contri-
bution by subtracting the thermal component. Here we
have shown that a simple way of accomplishing this task
is to make use of the Debye model, also extended to the
liquid state. The main justification for this simple pro-
cedure resides in the smallness of the thermal correction
itself (see Sect. 4 and Tab. 2). Through this procedure
we were able to obtain a zero-temperature evaluation of
the mean kinetic energy, 〈Ek〉0, which, in turn, was fitted
using a simple Grüneisen law: 〈Ek〉0 ∝ nγ . As expected,
the value of the Grüneisen parameters for liquid and solid
phases, turn out to be different. In addition it is worth
mentioning that the value we found for the solid phase of
our para-hydrogen sample [γsol = 1.67(2)] is very similar
to the isotropic mean of the same quantity (γ = 1.63) ob-
tained from the phonon dispersion curves of low-pressure
solid ortho-deuterium (see Sect. 4).

The information content of the solid phase spectra ap-
pears richer than the liquid ones. In particular, from the
intense sharp peak centered at ~ω = 14.2 meV, we were
able to obtain the spherically averaged Debye-Waller fac-
tor, and from this, the mean square displacement, 〈u2〉, for
solid para-hydrogen at T = 19.3 K. Again, by subtracting
the thermal contribution (see Sect. 5), we have derived
an experimental determination of the zero-temperature
component (which is still density-dependent) of the mean
square displacement, 〈u2〉0. It is interesting to note that
our estimate is different from an analogous determina-
tion by Vindryaevskii et al. [37], also using the neutron
scattering technique, but at a quite different temperature
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(T = 4.2 K). On the contrary it is in rather good quantita-
tive agreement with values extracted from data of Krause
and Swenson [35], which are based on calorimetric mea-
surements, and interpolated to the same temperature of
the present experiment. So we interpret the residual tem-
perature dependence of 〈u2〉0 as a clear mark of the solid
anharmonicity.

We point out that the observed difference between the
Grüneisen parameter for the kinetic energy and that ob-
tained from the specific heat (see Sect. 5), can be seen
as direct consequence of the non-Debye nature of the sys-
tem, i.e. the existence of a high-energy tail in the phonon
density of states [40]. In fact, both quantities could be
calculated integrating over the density of states, Z(ω),
a peculiar energy-weighting function. However, while the
specific heat is mainly influenced by the low-energy re-
gion of Z(ω), which incidentally also determines the value
of 〈u2〉0, the mean kinetic energy is mainly determined by
the high energy portion of the density of states.

Finally, we would like to address an interesting prob-
lem, connected to the dynamics of quantum liquids and
concerning the connection between the solid-phase den-
sity of states, Z(ω), and the corresponding quantity for
liquids, namely the power spectrum of the velocity auto-
correlation function (see for example Ref. [41]). We have
already attempted to study this problem [25] using our
previous low-energy spectral data of liquid para-hydrogen.
However, for that case both temperature and density were
changing and we could not go beyond a semi-quantitative
interpretation of the spectra. We are confident that the
present data, collected at constant temperature, could add
useful information to this interesting problem. Work is in
progress in this direction.
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